Шаповалов Александр Васильевич | |
Дата рождения: | |
---|---|
Место рождения: |
Шадринск Курганской области |
Учёная степень: |
доктор физико-математических наук |
Учёное звание: | |
Научный руководитель: | |
Известные ученики: |
И.В. Широков, Е.В. Евдокимов |
Награды и премии: |
|
ШАПОВАЛОВ Александр Васильевич (29 января 1949 г., Шадринск Курганской области) – профессор кафедры теоретической физики.
Отец А.В. Шаповалова, Василий Федорович (1923-1989), из рабочих, участник и инвалид Великой Отечественной войны, окончил Всесоюзный заочный политехнический институт (Москва), инженер-электрик, работал в проектных организациях: начальником энергетического отдела института «Якутнипроалмаз» (Мирный), главным специалистом Томского комплексного отдела проектного института «Новосибпромстройпроект», с 1977 г. – пенсионер. Мать, Елена Карловна (девичья Гилис, 1922-1977), из рабочих, техник-электрохимик, работала инженером по оборудованию на Хабаровском химфармзаводе, затем руководителем группы сметного отдела проектного института.
Женат на Раисе Андреевне (девичья Ударцева, 1950). Она окончила ТПИ, инженер. Их дети: Татьяна (1975), окончила экономический факультет ТГУ, экономист коммерческой фирмы; Елена (1983), училась на факультете естественных наук и математики ТПУ.
А.В. Шаповалов начинал учиться в Саратове, а в 1963 г. продолжил учебу в Хабаровске. Будучи школьником, в 1963 г. поступил в юношескую математическую школу, а в 1964 г. - в школу юных физиков при Хабаровском педагогическом институте, окончил их в 1966 г. В 1966 г. принимал участие в физико-математической и химической олимпиаде школьников Восточной зоны СССР, был награжден почетной грамотой СО АН СССР как победитель 2-го тура олимпиады по физике, получив рекомендацию для поступления в вузы Сибири и Дальнего Востока. В 1966 г. окончил с серебряной медалью среднюю школу № 39 Хабаровска и поступил на физико-технический факультет ТПИ.
Избирался членом бюро ВЛКСМ факультета (отвечал за НИРС). На 3-м курсе А.В. Шаповалов в группе студентов ТПИ и ТГУ под руководством профессора В.Г. Багрова начал вести исследования в области квантовой теории поля во внешних полях, изучая разделение переменных в уравнениях релятивистской квантовой механики с внешними полями. Получал Ленинскую стипендию, обучался по индивидуальному плану. Преддипломную практику проходил в МГУ под руководством заведующего кафедрой теоретической физики МГУ профессора А.А. Соколова (выпускник ТГУ) и проректора МГУ по естественным факультетам профессора И.М. Тернова. Окончил с отличием институт (1973) по специальности «экспериментальная ядерная физика» с квалификацией «инженер-физик», защитив на английском языке дипломный проект в форме отчета «Симметрия и точное решение уравнения Клейна - Гордона» (научный руководитель В.Г. Багров).
Был членом бюро ВЛКСМ СФТИ, членом профбюро отдела, куратором студенческой группы, членом профбюро факультета (ответственный за спортивную работу).
С 23 апреля 1973 г. – ассистент кафедры экспериментальной физики физического факультета ТГУ. С 4 сентября 1973 г. – аспирант кафедры электродинамики и квантовой теории поля физического факультета ТГУ. C 7 октября 1976 г. – младший научный сотрудник лаборатории оптических волн СФТИ. С 11 ноября 1978 г. – ассистент кафедры теоретической физики, с 16 января г. – ассистент, с 24 ноября 1979 г. – старший преподаватель кафедры электродинамики и квантовой теории поля, с 6 декабря 1982 г. – доцент кафедры электродинамики, с 27 мая 1992 г. – профессор кафедры квантовой теории поля, с 1 декабря 1996 г. – заведующий кафедрой теоретической физики физического факультета ТГУ. По совместительству преподавал в ТГПУ и ТПУ.
Ученое звание доцента по кафедре квантовой теории поля присвоено ВАК 27 февраля 1985 г., профессора по кафедре квантовой теории поля – Госкомитетом РФ по высшему образованию 29 сентября 1993 г.
Читал или читает курсы: теоретическая физика; механика сплошных сред»; электродинамика; квантовая механика; нелинейные уравнения математической физики; спецкурсы: «Функциональный анализ»; «Теория конечных групп»; «Асимптотические методы»; «Введение в теорию фрактальных структур»; «Симметрия дифференциальных уравнений».
Область научных исследований А.В. Шаповалова – квантовая теория поля. В период учебы в аспирантуре разработал классификацию внешних электромагнитных полей, допускающих полное разделение переменных в уравнении Клейна-Гордона-Фока; классификацию систем разделяющихся координат и проведение процедуры разделения переменных в явной форме. Это позволило найти многочисленные классы новых точных решений уравнений Клейна-Гордона-Фока и уравнения Дирака. Построению новых точных решений была посвящена большая серия статей, часть из которых была выполнена с участием А.В. Шаповалова. В свою очередь, построенные решения были использованы в расчетах физических эффектов в квантовой электродинамике с внешним полем. В последующие годы на этой базе сформировалось научное направление, которое привело к обобщениям «классической» теории разделения переменных и существенному расширению возможностей построения новых точных решений уравнений математической физики. Развитые А.В. Шаповаловым обобщения «классической» теории (т.е. теории разделения переменных, в которой системы разделяющихся координат не зависят от параметров разделения переменных, возникающих в процессе выполнения процедуры разделения переменных в уравнении) разделения переменных основаны на идеях теории симметрии дифференциальных уравнений. Он предложил конструкцию, позволяющую использовать для разделения переменных некоммутативные наборы операторов симметрии. По сравнению с «классической» теорией, в методе А.В. Шаповалова, названном некоммутативным разделением переменных, «разделяющиеся координаты» могут зависеть от параметров разделения. Эта конструкция непосредственно связана с алгебрами Ли и их обобщениями, так называемыми функциональными алгебрами, частными видами которых являются квантовые алгебры. Это, в свою очередь, дало возможность непосредственно применить методы теории алгебр Ли и их обобщений к построению точных решений уравнений математической физики. На основе методов точного интегрирования А.В. Шаповалова были построены классы новых точных решений релятивистских волновых уравнений, не допускающих интегрирования методами «классической» теории разделения переменных. Впоследствии ему удалось синтезировать конструкции метода некоммутативного разделения переменных с так называемыми алгебрами Хопфа и применить развитый метод к интегрированию уравнений, описывающих многомерную квантово-механическую модель магнетика определенного типа. В процессе разработки методов точного интегрирования, уходящих корнями в свойства симметрии уравнения, потребовалось исследовать некоторые специфические вопросы теории симметрии дифференциальных уравнений, основы которой были заложены в работах академика Л.В. Овсянникова и его научной школы. А.В. Шаповалов получил ряд общих теорем о свойствах алгебры симметрии линейного уравнения общего вида. Метод некоммутативного интегрирования в комбинации со свойствами алгебры симметрии уравнения привел к еще одному методу точного интегрирования уравнений математической физики – методу редукции.
22 июня 1978 г. в совете Воронежского университета защитил диссертацию «Разделение перемененных в уравнениях релятивистской квантовой теории и точные решения» на соискание ученой степени кандидата физико-математических наук (научный руководитель профессор В.Г. Багров; официальные оппоненты профессора Ю.М. Лоскутов и А.Е. Шабад; утвержден ВАК 18 октября 1978 г.).
Теория разделения переменных в ее «классическом» варианте оказалась продуктивной в задачах классической теории гравитации. В конце 70-х решить задачу об интегрировании уравнений общей теории относительности в пространствах, допускающих разделение переменных, было предложено В.В. Обухову, в то время аспиранту кафедры квантовой теории поля ТГУ. С начала и до середины 80-х А.В. Шаповалов совместно с В.В. Обуховым (ректор ТГПУ в 2000-2019 гг.) выполнил ряд совместных работ по классификации пространств электровакуума, названных ими штеккелевыми пространствами. В период работы в лаборатории оптических волн СФТИ (1976-1978) по инициативе А.В. Шаповалова на основе результатов и методов теории симметрии и точного интегрирования уравнений математической физики были начаты исследования по проблеме формирования оптических уединенных волн солитонного типа. В 80-е в них участвовали и сотрудники ИОА СО АН СССР. Была выполнена серия теоретических работ по изучению условий спонтанного образования оптических солитонов начального импульса несолитонной формы. Аналитическими методами и методами компьютерного моделирования было изучено влияние формы начального импульса на процесс солитонообразования.
25 декабря 1990 г. в специальном совете Института физики АН БССР защитил диссертацию «Проблемы симметрии основных уравнений теории поля» на соискание ученой степени доктора физико-математических наук (официальные оппоненты профессор В.Р. Кайгородов, член-корреспондент АН Азербайджанской ССР Р.А. Мир-Касимов и профессор В.Р. Халилов; утвержден ВАК 5 мая 1991 г.).
В дальнейшем А.В. Шаповаловым был выполнен цикл работ, посвященных изучению динамики солитоноподобных импульсов в средах сложной структуры, в том числе и во фрактальных. Часть работ этого цикла выполнена совместно с Ю.В. Кистеневым. В 90-х А.В. Шаповалов продолжил исследования по теории симметрии и методам точного интегрирования. С середины 90-х занялся изучением возможностей применения методов теоретической и математической физики в биофизике. Совместно с Е.В. Евдокимовым (профессор ТГУ) им были начаты работы по изучению детерминированного хаоса в биологических популяциях. В результате удалось обнаружить и исследовать явление резонансной супрессии детерминированного хаоса в основных дискретных моделях популяционной динамики. Были также развиты геометрические методы анализа регулярных режимов динамики популяций. С середины 90-х А.В. Шаповалов совместно с профессором ТПУ А.Ю. Трифоновым приступил к изучению солитонной динамики асимптотическими методами, построенными на основе теории комплексного ростка, разработанной академиком В.П. Масловым и его научной школой). Были построены классы солитоноподобных асимптотических решений для нелинейного уравнения Шредингера в многомерном пространстве с внешними полями; исследовано поведение солитона во внешних полях, моделирующих неоднородности среды распространения солитона. Для уравнения типа Хартри, представляющего собой обобщенное нелинейное уравнение Шредингера с нелокальной нелинейностью, ими были построены классы асимптотических решений, аналогичные когерентным и так называемым «сжатым» состояниям, хорошо известным в квантовой механике.
Автор более 160 работ.
Подготовил 5 кандидатов наук. Среди его учеников доктор физико-математических наук И.В. Широков (профессор физического факультета ОмГУ) и доктор биологических наук Е.В. Евдокимов (заведующий кафедрой сельско-хозяйственной биотехнологии международного факультета сельского хозяйства ТГУ).
Принимал участие в работе многих научных международных, всесоюзных, республиканских и региональных конференций и совещаний. В их числе: VII Всесоюзная конференция «Современные теоретические и экспериментальные проблемы теории относительной гравитации» (Ереван, 1988); Международная конференция «Критерии самоорганизации в физической, химической и биологической системах» (Москва-Суздаль, 1995); XII Symposium-school high resonant molecular spectroscopy (Petergof, 1996); 29th European group for atomic spectroscopy (Berlin, 1997);. 11th International Vavilov conference on nonlinear optics (Novosibirsk, Russia,1997); 1st International conference «Nonlinear phenomena in biology» (Pushchino, Russia, 1998); VI и VIII Международная конференция «Математика, компьютер, образование» (Пущино, 1999, 2001); International seminar Day on difraction in new millenium «DD-2001» (Saint Petersburg, Russia, 2001); 5th Korea-Russia international symposium on science and technology – KORUS 2001 (Tomsk, Russia, 2001) и др.
С 1982 г. – член докторского диссертационного совета (теоретическая физика; физика конденсированного состояния; физика полупроводников) в ТГУ, с 1996 г. – член кандидатского диссертационного совета в ТГПУ. Был ученым секретарем диссертационного совета. Являлся членом оргкомитета межрегионального научного семинара «Нелинейные системы и их модели», организованного МГУ и МГТУ «СТАНКИН».
Исследования А.В. Шаповалова поддержаны грантами РФФИ (1998-1999, 2000-2001), МО РФ (1994-1995, 2001-2002). Член Американского математического общества (1994). Член-корреспондент РАЕН (1998).
В свободное от работы время предпочитает активный отдых и занятия спортом.
Список трудов в разделе "Персоналии ученых ТГУ" на сайте НБ